ABSTRACT

In this paper, we propose a method to estimate head pose with convolutional neural network, which is trained on synthetic head images. We formulate head pose estimation as a regression problem. A convolutional neural network is trained to learn head features and solve the regression problem. To provide annotated head poses in the training process, we generate a realistic head pose dataset by rendering techniques, in which we consider the variation of gender, age, race and expression. Our dataset includes 74000 head poses rendered from 37 head models. For each head pose, RGB image and annotated pose parameters are given. We evaluate our method on both synthetic and real data. The experiments show that our method improves the accuracy of head pose estimation.

Index Terms— head pose estimation, convolutional neural network, synthetic images

1. INTRODUCTION

Head pose provides strong cues for human intention, motivation, and attention. Many applications rely on robust head pose estimation results, such as human behavior analysis, human computer interaction, gaze estimation etc.. In the field of computer vision, a head pose is typically interpreted as an orientation of a person’s head, which is represented by three angles: pitch, yaw and roll. The task of head pose estimation is challenging because of the large head appearance variation (expression, race and gender) and environmental factors (occlusion, noise and illumination). The techniques of head pose estimation are well summarized in [1].

Recently, convolutional neural network (CNN) method has achieved great success in many computer vision tasks. It can handle large training data and perform well. While getting a large amount of annotated data for the CNN model training is difficult for most tasks. Applying CNN method to head pose estimation has the same obstacle. In this paper, we design a pipeline to generate annotated synthetic head images and apply a CNN model to estimate head poses, which is trained on synthetic head images. Our method has the similar pipeline with the work of [2, 3]. The framework of our method is shown in Fig. 1. Firstly, we collected 37 high resolution 3D head models, in which we consider gender, age, race and expression (left panel in Fig.1 (a)). Then, we generate a head pose dataset by rendering technique in 3DS Max, which consists of synthetic RGB images and annotated parameters (right panel in Fig.1 (a)). Finally, a CNN model is trained on the synthetic images to learn the mapping from the head images to head poses (Fig.1 (b)).

There are three contributions in this paper:

i) We design a rendering pipeline to generate synthetic head images. In 3DS Max, by sampling in the parametric space, we render high resolution and realistic RGB head images with annotated ground truth. This method can be generalized to other tasks.

ii) We generated a high resolution head pose dataset. In this dataset, we consider gender, age, race and expression, which includes 74000 annotated head images.

iii) We train a convolutional neural network to estimate head poses in real time.
2. RELATED WORK

Random forest was used to solve head pose estimation problem because of the ability of handling large training dataset [4, 5, 6]. These methods could estimate head poses in real-time without specific hardwares like GPU. Besides, many different methods have been proposed. The approaches in [7, 8] sought low-dimensional manifolds to model the continuous variation in head poses. Geng et al. [9] associated a soft pose label, called multivariate label distribution (MLD) to each image, and minimized the weighted Jeffrey’s divergence between the predicted MLD and the ground truth MLD. Martin et al. [10] combined head features and head model generations to build a detector which provided accurate results in a wide pose range. The work of Ahn et al. [11] used a CNN method to learn a mapping function between visual appearance and head pose angles. Ghias et al. [12] performed pose estimation by fitting a 3D morphable model which included pose parameters.

Recent years, CNN method shows good performance in many computer vision tasks, such as classification [13, 14], object detection [15], face retrieval [16] and so on. It is also used in face related vision tasks, like pose estimation. Li et al. [17] proposed a cascade CNN which outperformed the state-of-the-art methods. Zhang et al. [18] used multimodal CNN to learn a mapping from head poses and eye images to gaze directions. Fan et al. [19] first achieved detection and localization on joint using CNN method, then combined these results from all image patches to estimate human pose.

3. METHOD

Given a RGB image of a head, our goal is to estimate its 3D pose. A head pose in 3D space is defined as $\Theta = (\theta_p, \theta_y, \theta_r)$, where θ_p, θ_y and θ_r represent three rotation angles of pitch, yaw and roll respectively. In this section, we model the estimation of head pose Θ as a regression problem. Then, we design a convolutional neural network to estimate Θ, which is trained on synthetic head images.

3.1. Synthetic Head Pose Dataset

In practice, the ground truth of head poses is difficult to measure. We propose to generate synthetic head poses by rendering techniques. There are three advantages: i) It provides accurate ground truth for each pose; ii) The precision of head poses can be controlled. For example, we can render every 1 or 0.1 degree; iii) Synthetic data is much denser than real data.

We utilize 3DS Max Script and VRAY renderer to render head models automatically. A head model is placed on a virtual ground. We move the camera randomly on the surface of a sphere whose center is the same as the head model’s center. We get head images through the camera’s view. It is equivalent to the head pose rotation along three axis.

Model. We collected 37 high quality 3D head models with texture. There are 15 females and 22 males in these models. Each model has more than 6500 vertices and 12000 faces. The age of these models is 25, 45 and 65. The race includes Europeans, Africans and Asians. We also consider seven kinds of expression: neural, anger, disgust, fear, sad, smile and surprise, which are not considered in the existing head pose dataset.

Parameters. According to human head motion constraints, we set different angle range for each rotation axis: $\theta_y \in [-75^\circ, 75^\circ]$, $\theta_p \in [-60^\circ, 60^\circ]$, and $\theta_r \in [-50^\circ, 50^\circ]$.

In order to get different head pose images, we draw three random numbers from the standard uniform distribution on interval (0,1). Each number is scaled to the corresponding range of each rotation axis. Then, the angle of each rotation axis is transformed to the angle of the camera’s view. We get head images in each direction through the camera’s view. Some examples and the statistics of our dataset are shown in Fig.2.
3.2. Architecture of the CNN

We design a CNN to estimate head pose. The architecture of our CNN is demonstrated in Fig. 3. The input of the network is a head RGB image with a fixed size of 96×96 pixels. The output of the network is a 3D head pose Θ, which consists of yaw, pitch, roll.

![Architecture of the proposed CNN](image)

Fig. 3. Architecture of the proposed CNN. The input is a 96×96 pixels head image. The output is a head pose vector Θ, which consists of yaw, pitch, roll.

3.3. Training

Assume that $D = \{(I_i, \Theta_i) | i \in [1, N]\}$ is the training set, where N is the number of training data. The learning task is to minimize the loss function $L(w)$:

$$w^* = \arg \min_w L(w)$$

$$= \arg \min_w \frac{1}{N} \sum_{n=1}^{N} f(I_n; w) + \lambda r(w).$$

$r(w)$ is a regularization term which penalizes large weights to improve generalization. The parameter λ represents the weight decay. It determines how you trade off between Euclidean loss and large weights. $f(I_n; w)$ is the loss term computed as the output of layers by the given weight w and head image I_n:

$$f(I_n; w) = \frac{1}{2} \| \psi(I_n; w) - \Theta_n \|^2,$$

where $\psi(I_n; w)$ is the predicted result of I_n with the network weight w.

Similar with the work in [13], we train our model by stochastic gradient descent with momentum and update weights by the following form:

$$w_{t+1} = w_t + V_{t+1}$$

$$V_{t+1} = \mu V_t - \alpha \nabla L(w_t),$$

where w_t and V_t are weight and momentum variable at epoch t respectively, α is learning rate and μ is momentum coefficient.

4. EXPERIMENTS

4.1. Settings

Dataset. We evaluate our method on two kinds of data: synthetic data from our dataset and real data from the Biwi Kinect Head Pose Dataset [6].

Synthetic dataset: There are 74000 images of 37 models in our synthetic dataset. The dataset consists of 37 sequences. Each sequence includes 2000 frames. The resolution of the RGB images is 640×480 pixels. The head pose range covers $\pm 75^\circ$ of yaw, $\pm 60^\circ$ of pitch and $\pm 50^\circ$ of roll.

Real image dataset: The Biwi Kinect Head Pose Dataset includes 15678 images of 20 people (6 females and 14 males). The dataset consists of 24 sequences. There are about 600 frames in each sequence. The RGB images have a resolution of 640×480 pixels, and a head typically consists of around 90×110 pixels. The head pose range covers $\pm 75^\circ$ of yaw, $\pm 60^\circ$ of pitch and $\pm 50^\circ$ of roll.

Implementation Details. We use the open-source CNN library Caffe [20] to implement our CNN. We initialize all weights in each convolutional layer by a zero-mean Gaussian distribution with standard deviation 0.01. In each fully-connected layer, we use XavierFiller [20] to initialize the weights. The neuron biases in each convolutional layer and
fully-connected layer are set to the constant 1 and the remain-
ings are set to 0. The stride is initialized as 1 in convolutional
layers and 2 in the pooling layers.

We train our model using stochastic gradient descent with
a batch size of 96, momentum of 0.9, and weight decay of
0.0005. The learning rate is initialized to 0.01 and decreases
by a factor of ten after every certain number of iterations.

4.2. Experimental Results

Generally, there are two strategies to split the training and
testing dataset [6, 11]. The difference is that whether the
training process has seen all the people. The first strategy
is to mix all data together and split them into training and
testing set randomly [11]. The second strategy is to choose
some sequences (including some people) as training set and
the remaining sequences as testing set (the other people) [6].
For the second strategy, in the testing process, there are some
person who never appeared in the training set before. It is
more challenging. We use the second strategy to evaluate our
method.

There are two kinds of data in our experiments: synthetic
RGB data (S) and real RGB data (R). We use combination
of two letters to represent the type of training data and testing
data. We evaluate our method in three data settings:

SS: The training data is synthetic RGB data and the test-
ing data is synthetic RGB data as well. We randomly choose
30 sequences as training set and the remaining 7 sequences
are testing set.

SR: The training data is synthetic RGB data and the test-
ing data is real RGB data. We use the same training set as SS
uses. All the 24 sequences in the Biwi dataset are used to test.

RR: The training data is real RGB data and the testing
data is real RGB data as well. We randomly choose 22 se-
quences as training set from all the sequences of the Biwi
dataset. The remaining 2 sequences are used as testing set.

In Fig.4, we present our estimation accuracy changes with
different error threshold settings. The threshold measures the
large deviation in estimation. For example, the minimum
threshold is 10 degrees. With this threshold, the error within
10 degrees is considered as correct. We evaluate the experi-
ment results by increasing 5 degrees each time. We can see
that the proposed method performs well compared with state-
of-the-art method on the same dataset. When the threshold
is 10 degrees, our results of SR get an accuracy of 79.3%,
whereas the Fanelli et al. [6] achieves only 70.5%. For a
success threshold of 20 degrees, our method achieves 95.5%
compared to 93.4% of Fanelli et al. [6]. Through observing
the results of RR and SR, we can find that SR has a better
performance. While SR uses a bigger training set compared
with RR, the observation confirms that large scale synthetic
RGB data is useful in the training of the CNN. Table 1 shows
the mean and standard deviation of yaw, pitch and roll errors
together. Noted that Drouard et al. [21] use color informa-
tion. Fanelli et al. [6] use depth information and Wang et al.
[22] use both of them. The table presents that the results of
SR is better than any one of them. More qualitative examples
are shown in Fig. 5.

<table>
<thead>
<tr>
<th>Method</th>
<th>Yaw(°) ±</th>
<th>Pitch(°) ±</th>
<th>Roll(°) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. [22]</td>
<td>8.8±14.3</td>
<td>8.5±11.1</td>
<td>7.4±10.8</td>
</tr>
<tr>
<td>Fanelli et al. [6]</td>
<td>6.6±12.6</td>
<td>5.2±7.7</td>
<td>6.0±7.1</td>
</tr>
<tr>
<td>Drouard et al. [21]</td>
<td>4.9±4.1</td>
<td>5.9±4.8</td>
<td>4.7±4.6</td>
</tr>
<tr>
<td>RR</td>
<td>6.1±5.2</td>
<td>6.0±5.8</td>
<td>5.7±7.3</td>
</tr>
<tr>
<td>SR</td>
<td>4.5±3.8</td>
<td>4.3±2.7</td>
<td>2.4±1.9</td>
</tr>
<tr>
<td>SS</td>
<td>2.7±2.4</td>
<td>3.4±3.1</td>
<td>2.2±2.3</td>
</tr>
</tbody>
</table>

Table 1. The estimation errors of each rotation angle. In each
cell, the first number is the mean of errors and the second one
is the standard deviation of errors.

Experiments show that testing a frame in our model only
needs 0.76 ms on a PC with 3.3GHz CPU and GTX TI-
TAN Black GPU. Therefore our approach can achieve real
time processing with the help of GPU.

5. CONCLUSION

In this paper, we design a convolutional neural network to es-
timate head poses which is trained on synthetic RGB images.
To provide annotated head poses in the training process, we
generate a realistic head pose dataset by rendering techniques,
which considers the variation of gender, age, race and expres-
sion. Our dataset includes 74000 head poses rendered from 37
head models. We evaluate our method on both synthetic and
real data. The experiments show that our method improves
the accuracy of head pose estimation. Benefit from the use of
GPU, real time processing can be achieved while maintaining
performance.
6. REFERENCES

