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ABSTRACT

Correlation filters have recently made significant im-
provements in visual object tracking on both efficiency and
accuracy. In this paper, we propose a sparse correlation
filter, which combines the effectiveness of sparse represen-
tation and the computational efficiency of correlation filters.
The sparse representation is achieved through solving an ℓ0
regularized least squares problem. The obtained sparse cor-
relation filters are able to represent the essential information
of the tracked target while being insensitive to noise. During
tracking, the appearance of the target is modeled by a sparse
correlation filter, and the filter is re-trained after tracking on
each frame to adapt to the appearance changes of the target.
The experimental results on the CVPR2013 Online Object
Tracking Benchmark (OOTB) show the effectiveness of our
sparse correlation filter-based tracker.

Index Terms— visual tracking, correlation filters, sparse
representation, ℓ0 regularization

1. INTRODUCTION

In visual object tracking methods based on correlation filter-
s, the target appearance is modeled by correlation filters, and
tracking is performed via convolution which becomes a sim-
ple element-wise multiplication in the Fourier domain. Due
to the high computational efficiency, Correlation Filter-based
Trackers (CFTs) have attracted considerable attention recent-
ly. Various trackers based on discriminative correlation filters
have been proposed [1], and lots of these methods outperform
state-of-the-art non-correlation filter-based trackers.

Although much improvement have been made in visual
tracking, the performance of CFTs is still affected by appear-
ance changes caused by variation of illumination, scaling,
background clutter, and pose variations. CFTs employ only
one image or a few images for training. The obtained filter-
s might contain non-critical features about the visual object,
and the presence of noise may result at the drifting or failure
of tracking. To solve these problems, we utilize sparse rep-
resentations in correlation filters for designing a robust and
fast visual tracker. Sparse coding is able to represent the es-
sential information of data while being insensitive to noise,

and it has been widely used in visual tracking and generated
state-of-the-art results[2, 3, 4, 5, 6].

In this paper, we propose a sparse correlation filter for vi-
sual object tracking. Our method employs ℓ0 regularization to
learn a sparse representation of correlation filters, taking ad-
vantages of both the robustness of sparse representations and
the promising performance and high computational efficiency
of correlation filters. During tracking, the tracked target ap-
pearance is modeled by a sparse correlation filter trained on
image patches cropped from an initial position of the target at
the first frame of the video. Then the filter is re-trained after
tracking on each frame, from which we can obtain the new
training data. To our best knowledge, we are the first one to
propose sparse correlation filters using sparse representations,
and apply it to solve visual tracking problems.

2. RELATED WORK

Different from other discriminative methods, correlation
filter-based tracking methods regress all the circular-shifted
variants of the input features to a target Gaussian function,
so there is no need to sample a large number of negative and
positive samples with hard-threshold. Bolme et al.[7] propose
to learn a Minimum Output Sum of Squared Error (MOSSE)
filter to model the appearance of the tracked object on gray-
scale images. They can produce stable correlation filters even
initialized with a single frame. With the use of correlation
filters, the MOSSE tracker achieves high tracking efficiency
with speed reaching several hundreds frames per second.

On the basic framework of MOSSE filter-based tracker,
numerous improvements have been made later. For instance,
by exploiting the circulant structure of the data matrix, Hen-
riques et al. [8] apply correlation filters to kernel space, and
propose the CSK tracker. Afterward, they extend the CSK
method with HOG features, and propose a Kernelized Corre-
lation Filter (KCF) and a Dual Correlation filter (DCF) with
linear kernel[9]. To better represent the input data, color nam-
ing features, HOG features, features extracted from deep con-
volutional neural networks are employed to the correlation fil-
ters [10, 11, 12, 13]. And works [14, 15] are presented to han-
dle scale variations on the object. To achieve successful track-
ing in handling long-term occlusion and out-of-view problem-



s, Ma et al.[16, 17, 18] adopt occlusion detection schemes for
long-term tracking. These methods achieve superior perfor-
mance compared with other state-of-the-art trackers.

In this work, we propose a spare correlation filter, and
the most related works are [7, 9, 11] where correlation filters
are presented firstly or improved using multi-channel features
(eg. HOG). Compared to these correlation filters, our method
considers the noise appearing in visual tracking, and we aim
to design a robust correlation filter for visual tracking. In our
method, sparse representation is utilized to learn a sparse cor-
relation filter to represent the essential information of data,
and the learned sparse correlation filter is insensitive to noise.

3. THE PROPOSED TRACKER

In correlation filter-based tracking methods, the target appear-
ance is modeled by correlation filters trained on image patch-
es extracted from the initial frame of a video, and tracking is
performed via correlation over the filter and a search window
in the next frame. The location corresponding to the max-
imum response of correlation results indicates the new tar-
get position. To successfully track the target in subsequent
frames, the correlation filter is updated online according to
that new position.

3.1. Sparse Correlation Filter

In order to construct a sparse representation of the tracked
target with CFTs, we minimize the output sum of square error
between the desire output and the observed output, and add ℓ0
regularization to the filter. This minimization problem can be
expressed by

min
h

∑
i

∥ fi ⊗ h− gi ∥2 +λ ∥ h ∥0, (1)

where fi is the i-th training image patch, h is the required
correlation filter, gi is the desired output of correlation which
has a compact 2D Gaussian shaped peak centered on the tar-
get in fi, ⊗ indicates correlation operation, and λ controls the
sparsity of the filter.

It is notable that the original ℓ0 regularized optimization
is a NP hard problem. Consequently, we utilize a alternat-
ing optimization strategy with half-quadratic splitting [19] to
obtain an approximation solution. In the first step, we rewrite
the objective function (1) as

min
h

∑
i

∥ fi ⊗ h− gi ∥2 +λc(h), (2)

where c(h) = #{p| | p |≠ 0}, p indicates the index of h, and
#{} denotes counting operator. Next, a auxiliary variable v
corresponding to h is introduced to simplify the optimization
problem (2) as

min
h,v

∑
i

∥ fi ⊗ h− gi ∥2 +λc(v) + β ∥ h− v ∥2, (3)

where β is utilized to control the similarity between the aux-
iliary variable v and the filter h. Formula (3) approaches (2)
when β is large enough.

Eq.(3) can be solved by alternatively minimizing h and v.
In v minimization problem, the value of h is fixed with the
result obtained from the previous iteration, and the same with
v in the minimization problem of h.

3.1.1. Subproblem of minimizing h

By omitting the terms not involving h in Eq. (3), the h esti-
mation subproblem is given by

min
h

∑
i

∥ fi ⊗ h− gi ∥2 +β ∥ h− v ∥2 . (4)

After using Fast Fourier Transform (FFT) for speedup, the
objective function above takes the form as

min
H

∑
i

∥ Fi ⊙H∗ −Gi ∥2 +β ∥ H − V ∥2, (5)

where Fi = F(fi), H = F(h), Gi = F(gi), V = F(v), in
which F is the FFT operator, and symbol ⊙ denotes element-
wise multiplication while ∗ indicates the complex conjugate.

In the Fourier domain, correlation becomes element-wise
multiplication, so we can estimate each element of the filter
H separately,

min
Hp

∑
i

| FipH
∗
p −Gip |2 +β | Hp − Vp |2, (6)

where p indexes the elements of H . This objective function is
a real-valued, positive, and convex function of complex vari-
ables. Therefore, we can solve it via the method using in [7].
Setting the partial w.r.t. Hp equal to zero and solving the
derivative, we can obtain the solution of H∗

p

H∗
p =

∑
i GipF

∗
ip + βV ∗

p∑
i FipF ∗

ip + β
. (7)

Finally, the sparse correlation filter takes the form as

H =

∑
i Fi ⊙G∗

i + βV∑
i Fi ⊙ F ∗

i + β
, (8)

where multiplication and division are element-wise opera-
tions.

3.1.2. Subproblem of minimizing v

Omitting the terms not involving v in Eq.(3), the formula for
minimizing v is defined as

min
v

λc(v) + β ∥ h− v ∥2, (9)

where c(v) return the number of non-zero elements in v. This
subproblem can actually be solved quickly because Eq. (9)



can be spatially decomposed where each element in v can be
estimated individually,

min
vp

λ

β
H(|vp|) + (hp − vp)

2, (10)

where H(|vp|) is a binary function returning 1 if |vp| ≠ 0,
and returning 0 otherwise. Solving Eq.(10), we can obtain
the optima of vp,

vp =

{
0, λ

β ≥ h2
p

hp, otherwise.
(11)

3.2. Filter Initialization and Updates

For a given video, an image patch, larger than the target re-
gion, is cropped from the initial position of the target at the
first frame. And an initialized sparse correlation filter is ob-
tained by training with this image patch.

During tracking, the object appearance often changes sig-
nificantly due to partial or fully occlusion, deformation, fast
motion, and the variety of rotation, scale, pose, illumination.
Accordingly, it is a crucial part of visual tracking to update the
filter online. Our sparse correlation filters are re-trained after
tracking on each frame, and the terms about image patches in
Eq. (8) for solving Hi are updated with a learning rate η after
tracking on frame i:

Hi =
Ai + βV

Bi + β
, (12)

Ai = (1− η)Ai−1 + ηFi ⊙G∗
i , (13)

Bi = (1− η)Bi−1 + ηFi ⊙ F ∗
i . (14)

4. EXPERIMENTS

We implement our sparse correlation filter-based tracker in
MATLAB on a desktop computer with an I7-2600 Intel 3.40
GHz CPU with 16 GB RAM. In the experiments, we presence
a multi-channel sparse correlation filter with HOG features
[20], using 9 orientation bins. Our sparse correlation filter
requires a few more parameters, including ℓ0 regularization
parameter λ which is set to 0.2, parameter β controlling the
similarity between the filter h and the auxiliary variable v, and
parameter padding fixed with 1.5 (denotes the tracked region
is 1.5 times larger than the target region). β is automatically
adapted in iterations starting from β0 = 0.02 to βmax = 105

by a update rate κ = 1.8.
The pipeline for the tracker is intentionally simple, and

does not including any additional information for failure de-
tection. We first train a sparse correlation filter on some image
patches obtained from the initial position of the target on the
first frame. For a new frame, we detect over the image patch
at the previous position, and update the target position with

(a) (b)

Fig. 1. Distance precision plots for all the 50 benchmark se-
quences using one-pass evaluation (OPE). (a) Distance preci-
sion plots of our tracker and a baseline tracker. (b) Distance
precision plots of our tracker and state-of-the-art trackers, on-
ly the top ten ranked trackers and corresponding results are
shown.

the position corresponding to the maximum value of the cor-
relation results. Finally, we re-train a new model with image
patches cropped from the new target position for tracking at a
new frame.

4.1. Sparsity Evaluation

In order to clearly demonstrate the effectiveness of the spar-
sity of correlation filters, we report the tracking results of our
sparse correlation filter and a baseline tracker with the same
parameter values. The distance precision plots for compari-
son are shown in Figure 1(a). From this figure, we can learn
that our sparse correlation filter obviously outperforms the
baseline tracker. Besides, our tracker performs favorably a-
gainst the baseline under all the eleven video attributes anno-
tated in the benchmark [21].

4.2. Overall Performance

Our trackers are evaluated on a famous visual object tracking
dataset OOTB [21] that contains 50 video sequences with 51
targets. This dataset covers various challenging situations for
visual tracking, including deformation, in-plane and out-of-
plane rotation, partial occlusion, illumination variation, fast
motion, etc.

The main performance criteria we used is precision
curves. A frame may be successfully tracked if the location
error between the predicted target center and the ground truth
is smaller than a given threshold, ordinarily, this threshold is
20 pixels. Precision curves simply show the percentage of
correctly tracked frames. Another popular choice is success
curves, using bounding box overlap to evaluate the trackers.
However, success curves heavily penalize trackers that do not
track across scale, even if the target is tracked perfectly.

For comparison, we evaluate our trackers against the D-
CF tracker, the KCF tracker, and all trackers summarized in



Fig. 2. Distance precision plots for eleven different tracking challenging attributes: motion blur, occlusion, fast motion, il-
lumination variation, out of view, in-plane rotation, out-of-plane rotation, scale variation, low resolution, deformation, and
background clutter. Our proposed tracker performs favorably against most trackers with these attributes.

[21]. Figure 1(b) shows the results under one-pass evaluation
(OPE) using distance precision rate on all the 50 benchmark
sequences. Overall, the proposed algorithm performs better
than other methods, and achieves an distance precision rate of
75.3% while operating at a speed about 10 frames per second.

Further evaluations are performed to analyze the perfor-
mance of sparse correlation filters under different video at-
tributes. Figure 2 shows the OPE for all the eleven video
attributes, including motion blur, occlusion, fast motion, il-
lumination variation, out of view, in-plane rotation, out-of-
plane rotation, scale variation, low resolution, deformation,
and background clutter. From Figure 3, we can observe that
our method performs favorably against other trackers.

5. CONCLUSION

In this paper, we have proposed a sparse correlation filter for
visual object tracking by exploiting the sparse representation
of the target. A minimization problem for sparse correlation
filters is obtained through applying ℓ0 regularization to the
conventional correlation filter formula. To solve this optimal
problem, we have introduced a auxiliary variable and utilized
a alternating optimization strategy with half-quadratic split-

ting. During object tracking, we employ our new sparse cor-
relation filter to model the appearance of the target, and the
filter is re-trained after tracking on every frame. The experi-
mental results on the OOTB dataset have shown that the pro-
posed method outperforms other state-of-the-art methods, and
the comparison with a baseline tracker has demonstrated the
effectiveness of our sparsity on the filter.
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